An Octree Based Approach to Multi-Grid B-spline Registration

Pingge Jiang & James A. Shackleford

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DREXEL UNIVERSITY

Multi-grid Hierarchical B-spline Registration

▶ Goal:

- Recover deformation field that captures both gross and local motion by giving information from coarser layer to finer layer
- ► Each layer increases the number of parameterizing control points, allow for increasingly complex deformations

Limitations:

- ► Each layer is optimized independently (only one layer at a time) and forces to apply uniform spacing of control points everywhere
- Inability to correctly capture discontinuities (e.x. sliding motion) at organ interfaces while maintaining acceptable solutions
- Difficulty in selecting number of free parameters/number of layers for a particular anatomical site

Hierarchical Octree B-spline

- Constructed from multiple levels with different grid spacing and optimized simultaneously
- Different regions are managed by different control point grid spacing
- Recursively subdivide support regions of coarser grid levels into 8 finer support regions and it's not applied uniformly to all regions
- How to figure out which regions need to be subdivided?

Octree Construction Process

- Each node represents an image region
- Goal: distinguish complex deformation regions V.S. less complex deformation regions
 - ▶ Stage 1: build an initial complete octree on frequency power spectrum

Last level (finest level) is designed to decouple the sliding motion vectors (different grid spacing for adjacent regions)

Level 0

Level 0

Level 1

Level 2

Level 1

Level 2

Level 3

Level 4

- ► Each node represents an image region
- Goal: distinguish complex deformation regions V.S. less complex deformation regions
 - Stage 1: build an initial complete octree on frequency power spectrum
 - Stage 2: use heuristic methods to refine octree

Last level (finest level) is designed to decouple the sliding motion vectors (different grid spacing for adjacent regions)

stage 2

stage 1

Octree Construction Process

- ► Each node represents an image region
- Goal: distinguish complex deformation regions V.S. less complex deformation regions
 - Stage 1: build an initial complete octree on frequency power spectrum
 - Stage 2: use heuristic methods to refine octree

Last level (finest level) is designed to decouple the sliding motion vectors (different grid spacing for adjacent regions)

Subdivision strategy

$$S_{final} = \begin{cases} S_{freq} \cup S_{second}, & ROIs (e.x.in-lung region) \\ S_{freq}, & otherwise \end{cases}$$

- ▶ Two stages:
 - \triangleright stage 1: S_{freq} frequency power spectrum based, extract high frequency image content for potential discontinuous regions

$$S_{freq} = \begin{cases} 1, & \sum_{z=0}^{N_z} \sum_{y=0}^{N_y} \sum_{x=0}^{N_x} I_{freq}(x,y,z) > T \\ 0, & otherwise \end{cases}$$

$$I_{freq}: \text{ high-pass filtered support region}$$

$$T: \text{ threshold determined by ranking image power for all regions}$$

$$N_x N_x N_z: \text{ region dimensions}$$

 I_{freq} : high-pass filtered support region

 N_x , N_y , N_z : region dimensions

 \blacktriangleright stage 2: S_{second} heuristic methods

 (S_{freg}) is conservative. Stage 2 finds overlooked regions to be subdivided)

- ► MSE/NMSE
- Dominant flow direction
- Motion Bifurcation

Subdivision strategy

$$S_{final} = \begin{cases} S_{freq} \cup S_{second}, \\ S_{freq}, \end{cases}$$

ROIs (e.x.in — lung region) otherwise

After stage 1

After stage 2

Stage 2 Heuristics

- > MSE/NMSE
 - Quantifies similarity of two corresponding regions
 - Increases the degree of freedom for regions not well aligned yet

- Dominant Flow Direction
 - Good basis for estimating discontinuous motion vectors
 - Detects the presence of multiple optical flow directions

- Motion Bifurcation
 - Strong indicator of sliding motion between organs moving in different directions
 - Analyzes displacement field by using incomplete octree grid

Results

- DIR-Lab data: 10 thoracic 4DCT image volumes with 10 respiratory phases each
- 300 in-lung reference landmarks and 20 additional landmarks in spinal column on the extreme phase images
- Each testing image has 512 * 512 * 128 voxel dimension with 0.97mm * 0.97mm
 * 2.5mm physical spacing
- Begin with 8 * 8 * 8 nodes at coarsest level (uniformly spaced), to 128 * 128 * 128 finest level (non-uniform, depend on different regions)

Level index	Control point spacing(mm)	Number of regions	
0	62.08 * 62.08 * 40	8 * 8 * 8	
1	31.04 * 31.04 * 20	16 * 16 * 16	
2	15.52 * 15.52 * 10	32 * 32 * 32	
3	7.76 * 7.76 * 5	64 * 64 * 64 For	ROIs
4	3.88 * 3.88 * 2.5	128 * 128 * 128 For	Decoupling

Results

- DIR-Lab data: 10 thoracic 4DCT image volumes with 10 respiratory phases each
- 300 in-lung reference landmarks and 20 additional landmarks in spinal column on the extreme phase images
- Each testing image has 512 * 512 * 128
 voxel dimension with 0.97mm * 0.97mm
 * 2.5mm physical spacing
- Begin with 8 * 8 * 8 nodes at coarsest level (uniformly spaced), to 128 * 128 * 128 finest level (ununiformed, depend on different regions)
- Level 0 and level 1 completely generated from frequency power spectrum and subdivision ratio are the same
- Level 2 ratio differs, MSE and NMSE are around 60%. Optical flow and motion bifurcation are around 87%

Subdivision ratio at each level

Results

Proposed octree B-spline compared with a traditional single grid uniform Bspline according to distance of representative landmarks before and after registration

Thank you

Questions?